Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer.

نویسندگان

  • Amanda K Turek
  • David J Hardee
  • Andrew M Ullman
  • Daniel G Nocera
  • Eric N Jacobsen
چکیده

Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes

DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...

متن کامل

Through-bond photoinduced electron transfer in a porphyrin-fullerene conjugate held by a Hamilton type hydrogen bonding motif.

Control over the occurrence of through-bond electron transfer in self-assembled donor-acceptor conjugates is often difficult, since through-space electron transfer also competes due to the flexible nature of the spacer used to link the entities. In the present study, we have constructed a self-assembled donor-acceptor conjugate held solely by complementary hydrogen bonding and established throu...

متن کامل

Deciphering the incognito role of water in a light driven proton coupled electron transfer process† †Electronic supplementary information (ESI) available: Materials and methods, IR, NMR, HRMS and necessary supplementing photophysical spectra along with corresponding data are provided in the form of a table. See DOI: 10.1039/c7sc03161k

Light induced multisite electron proton transfer in two different phenol (simple and phenol carrying an intramolecularly hydrogen bonded base) pendants on acridinedione dye (ADD) and an NADH analogue was studied by following fluorescence quenching dynamics in an ultrafast timescale. In a simple phenol derivative (ADDOH), photo-excited acridinedione acquires an electron from phenol intramolecula...

متن کامل

Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions.

A comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions is presented. Herein, hydride and hydrogen atom transfer refer to reactions in which the electrons and protons transfer between the same donor and acceptor, while proton-coupled electron transfer (PCET) refers to reactions in which the electrons and protons transfer between different centers. Within these def...

متن کامل

Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides.

The effects of multiple changes in hydrogen bond interactions between the electron donor, a bacteriochlorophyll dimer, and histidine residues in the reaction center from Rhodobacter sphaeroides have been investigated. Site-directed mutations were designed to add or remove hydrogen bonds between the 2-acetyl groups of the dimer and histidine residues at the symmetry-related sites His-L168 and Ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Angewandte Chemie

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 2016